Data Explorer
Contents
Table of Contents¶
Giant Fiber System Activity¶
In this lab you measured the activity of the giant fiber system using extracellular differential electrodes. The activity that you will observe in your recording is referred to as a complex action potential (CAP). You will apply your knowledge from the previous labs to interpret this signal. The main goal of today is to analyze conduction velocity of the Giant Fiber system. One of the predominant analysis frameworks you will use is comparing trials across bouts.
Setup¶
Import and define functions¶
#@title {display-mode: "form" }
#@markdown Run this code cell to import packages and define functions
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from scipy import ndimage
from scipy.signal import hilbert,medfilt,resample, find_peaks, unit_impulse
import seaborn as sns
from datetime import datetime,timezone,timedelta
pal = sns.color_palette(n_colors=15)
pal = pal.as_hex()
import matplotlib.pyplot as plt
import random
from numpy import NaN
from pathlib import Path
from matplotlib.ticker import (AutoMinorLocator, MultipleLocator)
from ipywidgets import widgets, interact, interactive, interactive_output
%config InlineBackend.figure_format = 'retina'
plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle")
print('Task completed at ' + str(datetime.now(timezone(-timedelta(hours=5)))))
Mount Google Drive¶
#@title {display-mode: "form" }
#@markdown Run this cell to mount your Google Drive.
from google.colab import drive
drive.mount('/content/drive')
print('Task completed at ' + str(datetime.now(timezone(-timedelta(hours=5)))))
Import data¶
Import data digitized with Nidaq USB6211 and recorded using Bonsai-rx as a .bin file
If you would like to explore the analysis for this lab, but do not have data, you can download examples for the following experiments using the linked shared file:
- CAP measured at different distances from the stimulating electrodes. If you are using this example file, the sample rate was 30000 with three channels (channel 0 and 1 was the nerve signal and channel 2 was the stimulus monitor). The distance between stimulation and ch0 measurement electrodes was 3 cm. The distance between the two measurement electrodes was 3 cm.
- manual stimulation of the anterior tip of the worm (Sampling rate: 30000, 3 channels, ch0 measurement electrode 4 cm anterior to ch1 measurement electrode. ch 2 not used.) Use the following bout times for the best signal-to-noise ratio in the recording: [[17,21],[23,26],[28,30],[35,40]]
- manual stimulation of the posterior tip of the worm (Sampling rate: 30000, 3 channels, ch0 measurement electrode 4 cm anterior to ch1 measurement electrode. ch 2 not used.). Use the following bout times for the best signal-to-noise ratio in the recording: [[29.1,29.27],[38.5,38.7],[45,55]]
#@title {display-mode: "form" }
#@markdown Specify the file path
#@markdown to your recorded data in the colab runtime (find the filepath in the colab file manager):
filepath = "full filepath goes here" #@param
# filepath = '/Volumes/Untitled/BIOL247/data/earthworm-giant-fiber-cap/diff_cv_0.bin' #@param
# filepath = '/Volumes/Untitled/BIOL247/data/earthworm-giant-fiber-cap/manual_post_2chan_same-pol_0.bin'
#@markdown Specify the sampling rate and number of channels recorded.
sampling_rate = NaN #@param
number_channels = NaN #@param
# sampling_rate = 30000 #@param
# number_channels = 3 #@param
# downsample = False #@param
# newfs = 10000 #@param
#@markdown After you have filled out all form fields,
#@markdown run this code cell to load the data.
filepath = Path(filepath)
# No need to edit below this line
#################################
data = np.fromfile(Path(filepath), dtype = np.float64)
data = data.reshape(-1,number_channels)
data_dur = np.shape(data)[0]/sampling_rate
print('duration of recording was %0.2f seconds' %data_dur)
fs = sampling_rate
# if downsample:
# # newfs = 10000 #downsample emg data
# chunksize = int(sampling_rate/newfs)
# data = data[0::chunksize,:]
# fs = int(np.shape(data)[0]/data_dur)
time = np.linspace(0,data_dur,np.shape(data)[0])
print('Data upload completed at ' + str(datetime.now(timezone(-timedelta(hours=5)))))
Plot raw data¶
#@title {display-mode: "form"}
#@markdown Run this code cell to plot the imported data. <br>
#@markdown Use the range slider to scroll through the data in time.
#@markdown Use the channel slider to choose which channel to plot
#@markdown Be patient with the range refresh... the more data you are plotting the slower it will be.
slider_xrange = widgets.FloatRangeSlider(
min=0,
max=data_dur,
value=(0,1),
step= 1,
readout=True,
continuous_update=False,
description='Time Range (s)')
slider_xrange.layout.width = '600px'
slider_chan = widgets.IntSlider(
min=0,
max=number_channels-1,
value=0,
step= 1,
continuous_update=False,
description='channel')
slider_chan.layout.width = '300px'
# a function that will modify the xaxis range
def update_plot(x,chan):
fig, ax = plt.subplots(figsize=(10,5),num=1); #specify figure number so that it does not keep creating new ones
starti = int(x[0]*fs)
stopi = int(x[1]*fs)
ax.plot(time[starti:stopi], data[starti:stopi,chan])
w = interact(update_plot, x=slider_xrange, chan=slider_chan);
For a more extensive RAW Data Explorer than the one provided in the above figure, use the DataExplorer.py application found in the howto section of the course website.
Part I. Get your bouts and trials here¶
The presentation of each stimulus marks the start of each trial in your experiment. Changes in stimulus parameters mark the start/end of different bouts in your experiment.
Therefore, our first task in processing and analyzing data from the experiment is to figure out the trial times. You have two choices for how to detect events:
level crossing (recommended for trials based on square-wave stimulus pulses)
peak (recommended for trials based on neural events)
You can toggle between these two event detection modes using the “Type of event detection” radio buttons after running the code cell below. If you select “peaks” method, you can also specify a minimum allowable time between separate events (to avoid the same event with multiple peaks… like a CAP… from being counted more than once).
Define trial times¶
#@title {display-mode: "form"}
#@markdown Run this cell to create an interactive plot with a slider to scroll
#@markdown through the signal
#@markdown and set an appropriate event detection threshold
#@markdown (you can do so based on level crossing or peaks).
slider_xrange = widgets.FloatRangeSlider(
min=0,
max=data_dur,
value=(0,1),
step= 0.05,
readout=True,
continuous_update=False,
description='Time Range (s)',
style = {'description_width': '200px'})
slider_xrange.layout.width = '600px'
# slider_yrange = widgets.FloatRangeSlider(
# min=np.min(stim)-0.5,
# max=np.max(stim)+0.5,
# value=[np.min(stim),np.max(stim)],
# step=0.05,
# continuous_update=False,
# readout=True,
# description='yrange',
# style = {'description_width': '200px'})
# slider_yrange.layout.width = '600px'
select_channel = widgets.Select(
options=np.arange(np.shape(data)[1]), # start with a single trial on a single bout... it will update when runs ; old: np.arange(len(trial_times)),
value=0,
#rows=10,
description='Channel used to detect events',
style = {'description_width': '200px'},
disabled=False
)
slider_threshold = widgets.FloatSlider(
min=-2,
max=2,
value=0.2,
step=0.001,
readout_format='.3f',
continuous_update=False,
readout=True,
description='event detection threshold',
style = {'description_width': '200px'})
slider_threshold.layout.width = '600px'
detect_type_radio = widgets.RadioButtons(
options=['peak', 'level crossing'],
value='peak', # Defaults to 'level crossing'
layout={'width': 'max-content'}, # If the items' names are long
description='Type of event detection',
style = {'description_width': '200px'},
disabled=False
)
radio_polarity = widgets.RadioButtons(
options=[1, -1],
value=-1,
description='peaks polarity',
disabled=False,
style = {'description_width': '200px'}
)
iei_text = widgets.Text(
value='0.005',
placeholder='0.005',
description='min IEI (seconds)',
style = {'description_width': '200px'},
disabled=False
)
def update_plot(chan_,xrange,thresh_,detect_type,polarity,iei):
fig, ax = plt.subplots(figsize=(10,5),num=1); #specify figure number so that it does not keep creating new ones
signal = data[:,chan_]
signal = signal-np.median(signal)
iei = float(iei)
if iei>0.001:
d = iei*fs #minimum time allowed between distinct events
if detect_type == 'peak':
r = find_peaks(signal*polarity,height=thresh_,distance=d)
trial_times = r[0]/fs
# print(r[1])
ax.scatter(trial_times,[r[1]['peak_heights']*polarity],marker='^',s=300,color='purple',zorder=3)
if detect_type == 'level crossing':
# get the changes in bool value for a bool of signal greater than threshold
# if polarity == 1:
threshold_crossings = np.diff(signal*polarity > thresh_, prepend=False)
# get indices where threshold crossings are true
tcross = np.argwhere(threshold_crossings)[:,0]
# get a mask for only positive level crossings
mask_ = [signal[t]-signal[t-1] > 0 for t in tcross]
# if polarity == -1:
# threshold_crossings = np.diff(signal*polarity < thresh_*polarity, prepend=False)
# # get indices where threshold crossings are true
# tcross = np.argwhere(threshold_crossings)[:,0]
# # get a mask for only positive level crossings
# mask_ = [signal[t]-signal[t-1] > 0 for t in tcross]
# trial times are positive level crossings
trial_times = tcross[mask_]/fs
ax.scatter(trial_times,[thresh_*polarity]*len(trial_times),marker='^',s=300,color='purple',zorder=3)
starti = int(xrange[0]*fs)+1
stopi = int(xrange[1]*fs)-1
ax.plot(time[starti:stopi], signal[starti:stopi], color='black')
# ax.plot(tmp,color='black')
ax.hlines(thresh_*polarity, time[starti],time[stopi],linestyle='--',color='green')
# ax.set_ylim(yrange[0],yrange[1])
ax.set_xlim(xrange[0],xrange[1])
ax.xaxis.set_minor_locator(AutoMinorLocator(5))
return trial_times
w_trials_ = interactive(update_plot, chan_=select_channel,
xrange=slider_xrange,
thresh_=slider_threshold, detect_type = detect_type_radio,
polarity=radio_polarity, iei = iei_text);
display(w_trials_)
#@title {display-mode: "form"}
#@markdown Run this cell to finalize the list of trial times
#@markdown after settling on a channel and threshold in the interactive plot. <br>
#@markdown This stores the trial times in an array called 'trial_times'.
trial_times = w_trials_.result
Define Bouts¶
#@title {display-mode: "form"}
#@markdown Use the interactive plot of the stimulus monitor channel in the last section to determine
#@markdown the start and stop time for each of the bouts in your experiment.
#@markdown Specify the list of bout ranges as follows: [[start of bout 0, end of bout 0],[start 1, end 1],...]] <br>
bouts_list = [[NaN,NaN]] #@param
# bouts_list = [[2,10],[10,20],[20,30],[30,45],[45,55],[55,70],[70,85],[85,100],[100,120]]
# bouts_list = [[29.1,29.27],[38.5,38.7],[45,55]]
#@markdown Then run this code cell to programatically define the list of bouts as 'bouts_list'.
Part II. CAP analysis¶
Visualize Trials¶
In addition to visualizing specific trials and channels in each bout, the following interactive data exploration and analysis tool provides an option to detect peaks on a selected channel within that trial. If you select a channel for peak detection, you can use the threshold slider to change what peaks are detected in the signal. For this option, multiple channels can be visualized at once, but only one channel can be selected at a time for peak detection. The times of the peaks on that trial as well as the time since the last trial will then be printed for you to see. These are called “lagging” peaks because you are looking for events that occur after trial onset.
#@title {display-mode:"form"}
#@markdown Run this code cell to create an interactive plot to
#@markdown examine the CAP on individual trials for each bout.
#@markdown You can overlay multple channels by selecting more than one.
#@markdown You can overlay multiple trials by selecting more than one.
#@markdown (To select more than one item from an option menu, press the control/command key
#@markdown while mouse clicking or shift while using up/down arrows).
slider_xrange = widgets.FloatRangeSlider(
min=-0.01,
max=0.05,
value=(-0.001,0.03),
step=0.0005,
continuous_update=False,
readout=True,
readout_format='.4f',
description='xrange (s)'
)
slider_xrange.layout.width = '600px'
slider_yrange = widgets.FloatRangeSlider(
min=-1,
max=1, # normal range for earthworm experiments
value=(-0.5,0.5),
step=0.01,
continuous_update=False,
readout=True,
description='yrange'
)
slider_yrange.layout.width = '600px'
ui_range = widgets.VBox([slider_xrange, slider_yrange])
# trials in bout 0 to start...
trials_t = trial_times[(trial_times>bouts_list[0][0]) & (trial_times<bouts_list[0][1])]
select_channels = widgets.SelectMultiple(
options=np.arange(np.shape(data)[1]), # start with a single trial on a single bout... it will update when runs ,
value=[0],
#rows=10,
description='Channels',
disabled=False
)
select_bouts = widgets.Select(
options=np.arange(len(bouts_list)), # start with a single trial on a single bout... it will update when runs ; old: np.arange(len(trial_times)),
value=0,
#rows=10,
description='Bouts',
disabled=False
)
select_trials = widgets.SelectMultiple(
options=np.arange(len(trials_t)), # start with a single trial on a single bout... it will update when runs ,
value=[0],
#rows=10,
description='Trials',
disabled=False
)
ui_trials = widgets.HBox([select_channels, select_trials, select_bouts])
slider_threshold = widgets.FloatSlider(
min=-0.3,
max=0.3,
value=0.1,
step=0.001,
readout_format='.3f',
continuous_update=False,
readout=True,
description='peak detection threshold',
style = {'description_width': '200px'})
slider_threshold.layout.width = '600px'
detect_chan_radio = widgets.RadioButtons(
options=['0', '1', '2', 'none'],
value='none', # Defaults to 'none'
layout={'width': 'max-content'}, # If the items' names are long
description='detect delay to peaks on channel: ',
style = {'description_width': '400px'},
disabled=False
)
ui_peaks = widgets.VBox([detect_chan_radio, slider_threshold])
trial_readout = widgets.Label(
value=f'time since last trial is: {NaN}'
)
trial_readout.layout.width = '600px'
lagging_readout = widgets.Label(
value=f'lagging peak times are: {NaN}'
)
lagging_readout.layout.width = '600px'
def update_plot(chan_list,trial_list,bout_,yrange,xrange,lagging_chan_,thresh_):
fig, ax = plt.subplots(figsize=(10,5))# ,ncols=1, nrows=1); #specify figure number so that it does not keep creating new ones
win_0 = int(xrange[0]*fs)
win_1 = int(xrange[1]*fs)
xtime = np.linspace(xrange[0],xrange[1],(win_1 - win_0))
trials_t = trial_times[(trial_times>bouts_list[bout_][0]) & (trial_times<bouts_list[bout_][1])]
trials_init_ = np.arange(len(trials_t))
select_trials.options = trials_init_
trial_list = [t_try for t_try in trial_list if t_try in trials_init_]
select_trials.value = trial_list
value=f'time since last trial is: {NaN}'
channel_colors = ['purple','green','blue','orange']
for chan_ in chan_list:
this_chan = data[:,chan_]
for trial_ in trial_list:
if trial_ in trials_init_:
t_ = trials_t[trial_]
if ((int(fs*t_)+win_0)>0) & ((int(fs*t_)+win_1))<len(this_chan):
data_sweep = this_chan[(int(fs*t_)+win_0):(int(fs*t_)+win_1)]
ax.plot(xtime,data_sweep,color=channel_colors[chan_],linewidth=2,alpha=0.5)
d = 0.001*fs
if (lagging_chan_ != 'none') & (len(trial_list)==1):
ax.hlines(thresh_, xrange[0],xrange[1],linestyle='--',color='green')
lagging_chan_ = int(lagging_chan_)
lagging_signal = data[(int(fs*t_)+win_0):(int(fs*t_)+win_1),lagging_chan_]
if thresh_ >=0:
r = find_peaks(lagging_signal,height=thresh_,distance=d)
lagging_peak_amp = r[1]['peak_heights']
if thresh_ <0:
r = find_peaks(-1*lagging_signal,height=-1*thresh_,distance=d)
lagging_peak_amp = -1*r[1]['peak_heights']
# print(r)
lagging_peak_times = [np.round(xtime[lt],5) for lt in r[0]]#r[0]/fs
lagging_readout.value=f'lagging peak times are: {lagging_peak_times}'
if trial_list[0] == 0:
trial_readout.value=f'time since last trial is: {NaN}'
if trial_list[0] > 0:
iti = trials_t[trial_list[0]] - trials_t[trial_list[0]-1]
trial_readout.value=f'time since last trial is: {iti:.5f}'
for lt_ in lagging_peak_times:
ax.scatter(lagging_peak_times,lagging_peak_amp,color='black',s=50,zorder=3)
ax.set_ylim(yrange[0],yrange[1]);
ax.set_xlabel('seconds')
# ax.vlines(0,yrange[0],yrange[1],color='black')
# # Change major ticks to show every 20.
# ax_pwm.xaxis.set_major_locator(MultipleLocator(5))
# ax_pwm.yaxis.set_major_locator(MultipleLocator(5))
# # Change minor ticks to show every 5. (20/4 = 5)
# ax_mro.yaxis.set_minor_locator(AutoMinorLocator(10))
ax.xaxis.set_minor_locator(AutoMinorLocator(10))
# ax_pwm.yaxis.set_minor_locator(AutoMinorLocator(5))
# # Turn grid on for both major and minor ticks and style minor slightly
# # # differently.
ax.grid(which='major', color='gray', linestyle='-')
ax.grid(which='minor', color='gray', linestyle=':')
# ax_pwm.grid(which='major', color='gray', linestyle='-')
# ax_pwm.grid(which='minor', color='gray', linestyle=':')
w = interactive_output(update_plot, {'chan_list':select_channels,
'trial_list':select_trials,
'bout_':select_bouts,
'yrange':slider_yrange,
'xrange':slider_xrange,
'lagging_chan_':detect_chan_radio,
'thresh_':slider_threshold});
display(trial_readout,lagging_readout,
ui_trials,ui_peaks,w,ui_range)
Visualize Trials Across Bouts¶
The following code cell will overlay the trial data from multiple channels, bouts, and trials. Each channel will be plotted on a different subplot. Each bout will be a different color. Specified trials will be averaged within each bout.
#@title {display-mode:"form"}
#@markdown Specify which channels you want to visualize.
channel_list = [NaN] #@param
#@markdown Specify which bouts you want to visualize.
bouts_all = [NaN] #@param
#@markdown Specify which trials you want to visualize for each bout.
#@markdown <br> Note that there must be a list of trials for every bout.
trials_all = [[NaN]] #@param
#@markdown Specify the time range around each trial time that you want to include in the plot.
xrange = [0,0.006] #@param
#@markdown Now run this code cell to create a plot that shows the trial-averaged response on each bout
win_0 = int(xrange[0]*fs)
win_1 = int(xrange[1]*fs)
xtime = np.linspace(xrange[0],xrange[1],(win_1 - win_0))
fig, ax = plt.subplots(figsize=(15,8),nrows=len(channel_list),ncols=1)
for j,chan_ in enumerate(channel_list):
this_chan = data[:,chan_]
for i,bout_ in enumerate(bouts_all):
data_avg = []
trial_list = trials_all[i]
trials_t = trial_times[(trial_times>bouts_list[bout_][0]) & (trial_times<bouts_list[bout_][1])]
for trial_ in trial_list:
t_ = trials_t[trial_]
if ((int(fs*t_)+win_0)>0) & ((int(fs*t_)+win_1))<len(this_chan):
# sweep = data[(int(fs*t_)+win_0):(int(fs*t_)+win_1),mro_channel]
data_sweep = this_chan[(int(fs*t_)+win_0):(int(fs*t_)+win_1)]
data_avg.append(data_sweep)
data_avg = np.asarray(data_avg).T
if len(channel_list)>1:
ax[j].plot(xtime,np.mean(data_avg,1),linewidth=2,label = f'bout {bout_}')
if len(channel_list)==1:
ax.plot(xtime,np.mean(data_avg,1),linewidth=2,label = f'bout {bout_}')
if len(channel_list)>1:
# ax.set_ylim(yrange[0],yrange[1]);
ax[j].set_xlabel('seconds')
ax[j].legend()
# ax.vlines(0,yrange[0],yrange[1],color='green')
ax[j].xaxis.set_major_locator(MultipleLocator(0.002))
ax[j].xaxis.set_minor_locator(AutoMinorLocator(10))
ax[j].grid(which='major', color='gray', linestyle='-')
ax[j].grid(which='minor', color='gray', linestyle=':')
if len(channel_list)==1:
# ax.set_ylim(yrange[0],yrange[1]);
ax.set_xlabel('seconds')
ax.legend()
# ax.vlines(0,yrange[0],yrange[1],color='green')
ax.xaxis.set_major_locator(MultipleLocator(0.002))
ax.xaxis.set_minor_locator(AutoMinorLocator(10))
ax.grid(which='major', color='gray', linestyle='-')
ax.grid(which='minor', color='gray', linestyle=':')
Part III. Plot data from .csv file¶
First, enter your conduction velocity data (Experiment 1: method 1 and method 2) and your conduction velocity and isi data (Experiment 2) all into separate columns of a .csv file. For example, your csv file might look like the following:
Then, you will import that .csv file so that you can make violin and scatter plots of the data in various columns. In the code cell below, you need to provide the path to the csv file (after putting it in your drive or dragging it into colab file manager). Then you need to provide the names of the columns that you want to plot and specify the plot style (‘scatter’ or ‘violin’). For example, for a violin plot of CV estimates using method 1, I would put ‘method1’ as the x_column
variable and specify ‘violin’ for the plot_type
variable. The violin plot style ignores the y_column
variable, which is used for the ‘scatter’ plot type.
#@title {display-mode:"form"}
#@markdown Specify the filepath to a csv file
filepath = 'full filepath' #@param
#@markdown Specify the header name of the column you want for your x points.
#@markdown If more than one header is specified (separated by commas), each will be plotted overlaid in a different color for a violin plot.
x_column = ['x column header'] #@param
# #@markdown Specify categorical bins using np.arange(start,stop,step) if the x_column is a continuous variable.
# #@markdown Use None if not needed.
# categorical_bins = np.arange(0,55,5) #@param
#@markdown Specify the header name of the column you want for your y points.
#@markdown If more than one header is specified (separated by commas), each will be plotted overlaid in a different color for a scatter plot
y_column = ['y column header'] #@param
#@markdown Specify the plot type ('scatter' or 'violin'). Note that for a 'violin' plot, only the 'x_column' data would be used.
plot_type = 'plot type' #@param
df = pd.read_csv(filepath)
hfig,ax = plt.subplots(figsize=(10,5))
if plot_type == 'scatter':
df_melted = df[y_column+x_column].melt(x_column[0],var_name='headers')
sns.scatterplot(data=df_melted,x=x_column[0],y='value',hue='headers');
if plot_type == 'point':
df_melted = df[y_column+x_column].melt(x_column[0],var_name='headers')
if categorical_bins != None:
df_melted[x_column[0]] = pd.cut(df_melted[x_column[0]],bins=cat_bins,labels=cat_bins[1:])
sns.pointplot(data=df_melted,x=x_column[0],y='value',hue='headers');
if plot_type == 'violin':
# sns.stripplot(y=y_column,data=df,color='black',size=10);
if len(x_column)==1:
sns.violinplot(x=x_column[0],data=df,color='grey')
if len(x_column)>1:
df_melted = df[x_column].dropna().melt(var_name='headers')
sns.violinplot(x='value',y='headers',split=True,data=df_melted, inner="stick")
# sns.stripplot()
Written by Dr. Krista Perks for courses taught at Wesleyan University.